
NOTATION 

I, electric current; ~, f, ~, respectively, the length, the cross-sectional area, and 
the perimeter of a metal rod; z, longitudinal coordinate; %, thermal conductivity; p, elec- 
trical resistivity; 6, b, coefficients in the temperature dependence of electrical resisti- 
vity; qs, specific thermal flux; ~, temperature drop; and k, wave number. 

] . 

2. 

3. 
4. 

5. 

LITERATURE CITED 

P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluc- 
tuations, Wiley (1971). 
W. Ebeling, Formation of Structures during Irreversible Processes [Russian translation], 
Mir, Moscow (]979). 
A. N. Shcherban' and V. I. Tarasevich, Inzh.-Fiz. Zh., 32, No. 5, 886-895 (1977). 
A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of 
Second-Order Dynamic Systems [in Russian], Nauka, Moscow (]966). 
S. S. Kutateladze, Heat Transfer during Condensation and Boiling [in Russian], Mashgiz, 
Moscow--Leningrad (]952). 

APPROXIMATE SOLUTION OF THE PROBLEM OF SOLIDIFICATION OF 

CURVILINEAR WALLS AND HOLLOW BODIES UNDER TRANSIENT CONDITIONS 

S. M. Gorokhov and L. P. Graboi UDC 621.396.6.001.24:536.2 

An approximate solution is obtained for the problem of solidification of curvi- 
linear walls, hollow and continuous bodies in a transient process under condi- 
tions of operation of a set of thermal regime factors. 

The operation of a large number of different instrumentation objects is characterized 
by a pulse heat liberation law in combination with high densities of the thermal fluxes being 
dissipated. This circumstance governed the broad application of melting materials and heat 
accumulators, in problems to support the thermal regimes of apparatus []]. Unfortunately, 
the solution of nonstationary heat conduction problems associated with the phase transition 
process evokes substantial difficulties of a calculational nature. For this reason, the 
majority of known analytic solutions of the solidification problems includes bodies of canon- 
ical form (plates, cylinders, spheres) [2]. Of considerably greater interest in engineering 
is the possibility of analyzing the dynamics of hollow bodies and curvilinear shells, as well 
as of bodies of complex configuration. 

Let us consider the problem of shell solidification (Fig. 1) characterized by the gover- 
ning dimensions R] and R2. Integral geometric properties of the shell are given by values of 
the inner $I and outer $2 surfaces and the corresponding volumes V~ and V2. 

The solidification process is determined by the action of two groups of regime factors: 

1) actions from the surface S~ of a medium with temperature t~ and a heat source of den- 
sity q~ distributed uniformly over this surface; 

2) actions from the surface $2 of a medium with temperature t2 and a surface heat source 
of density q2. 

The intensity of the heat exchange process on surfaces $I and $2 is given by the heat 
transfer coefficients al and ~2. The thermophysical characteristics (heat conduction coeffi- 
cients %1 and %2, densities Y] and Y2, heat of phase transition p) of the solid I and liquid 
2 phases are considered given. 

At the initial instant T = 0 the temperature of the medium t2 is reduced to a tempera- 
ture less than the solidification temperature t~, and later remains constant. 
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Fig. I. Shell under solidification 
conditions in the solid (I) and liquid 
(2) phases. 

The heat exchange condition on the phase interface has the form [2] 

k~ Oti(r' T) k2 at 2(r, T) d~ 
Or Or dT 

We use the first method of L. S. Leibenzon, based on the selection of temperature func- 
tions satisfying the heat exchange boundary conditions, to solve the problem formulated. 

The possibility of analyzing the temperature field in bodies of complex shape on the 
basis of a generalized one-dimensional heat conduction equation was displayed by N. A. 
Yaryshev [3]. This aspect was later developed in [4-6]. 

In conformity with [6], the stationary temperature field of a curvilinear wall has the 
form 

t(~ = Z,Bo(~+Z2Co(~, (2) 

where ZI and Z2 are the generalized thermal effects 

I I 
Zi=ti~-ql--, Z2= t~@q2--. (3) 

~i ~2 
The coefficients Bo(~) and Co(V) have the form 

, [ ( 2 )  
Bo~) = T  ~ l + T 2  + %--2~p~-~(qD~ 2 , 

Co ~ / =  --E 2~ ~ + 2 ~  + (~, -- ~ /7~ ,  (4) 

E = ~  1 + - ~ -  -1-9., 1 + - ~ -  r = - ~ ,  8=Rz--R, ,  (5) 

where ~, ~2 are complexes computed from the formulas 

% 6 S~ $2. 
Vl., q3o ='8 V---~2 , (6) 

and ~x, ~a are the Biot numbers governing the heat-exchange intensity 

6 8 

" '%2 

Describing the temperatures of the liquid t1(r) and solid ta(r) phases by using (2) and 
performing intermediate manipulations associated with substituting the expressions obtained 
into (1) and then differentiating, we obtain 

( ') ( 2>~tSt li - -  t3 q- qt 2,1,2S 2 t , , -  13 6- q2 1____ 
Or ~ (Z2 / 

Si~] .@ S (~)/,q _~_. 2~,.i )l~:zi S2(~)__]])_~_S(q])(~__~].~ 2~2)cz2 
dq 

d~ 
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Fig. 2. Solidification time of a 
layer of palmitic acid: 1) exact 
solution (]4); 2) approximate so- 
lution [2], (22); 3) proposed solu- 
tion (19). 

which should be integrated under the initial condition 

~(~)1,=0 = 6. (9) 

The s o l u t i o n  of  (8) can be o b t a i n e d  i f  t h e  form of  t h e  f u n c t i o n a l  d e p e n d e n c e  S(n)  i s  
known. 

The q u e s t i o n  o f  t he  a n a l y t i c a l  d e s c r i p t i o n  o f  t h e  i n t e r r e l a t i o n  be tween  the  t e m p e r a t u r e  
a v e r a g i n g  s u r f a c e  of  a o n e - d i m e n s i o n a l  s o l i d  and the  g e n e r a l i z e d  c o o r d i n a t e  was examined i n  
[ 4 ] .  F o l l o w i n g  t h e  r ecommenda t ions  o f  ~h i s  p a p e r ,  we u se  t h e  r e p r e s e n t a t i o n  

S ( ~ ) = A ( R , + ~ )  ~ . ( l O )  

The numerical value of the magnitude of the formfactor n in (|0) is computed by means 
of the formula [4] 

lg S~ 
Si 

n =  'g(=~7-t / S., --~i ) (11) 

For shells of canonical shape -- plates, cylinders, and spheres -- the form factor takes on 
the respective values 0, 1, 2. 

Taking account of (10), equation (8) becomes 

where 

d~ (12) 
d~ 

.2~lR2 (ti-- ta + qi--~t ) 2X2R~ ( t2--t3 + q~ -~ ) 
(13) % (~) / 

Then the desired solution to estimate the solidification time of a layer of thickness 
I=6--~ is 

I dN, .~E(8; _~), (14) 
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where ~< is the critical value of the solidification zone boundary corresponding to the sta- 
tionary state of a two-component liquid phase--solid phase system. 

The numerical value of the quantity D< is the positive root of the characteristic equa- 
tion 

q~ (~) + q)~ (n) = o. ( ] 5) 

Equation (12) allows direct integration. However, the structure of (]3) evokes substan- 
tial difficulties of a computational nature for integration in (14). 

Taking account of the boundary conditions 

1 I 1 1 
(n) ~=~ ~ (~) q~ (n) 

we simplify this problem by approximating the integrand I/(D(D) in (14) by the approximate 
dependence 

16) 

where 

1 _ 1 e in (. ~l - -  ~1_____s ) 
r (n). m (a) ~ - -  ~ ' 

17) 

1 1 
8 =  

�9 [6-- 0.632 (5-- NK)I ~(5) 18) 

Then the solidification time of a layer I of thickness 6 -- D for the shell (Fig. I) is 

T= p?~{. ~--5~ (6) 8(6-- ~)--8(~--~) [In ( ~--~ ) -- I]} " 6  -- ~ (19) 

Results of computing the solidification time of a palmitic acid plate (d = 0.I m) under 
boundary conditions of the first kind (~ = a2 = ~) and the temperature drops t~ -- ta = t3 -- 
t2 = 15~ are presented in Fig. 2. The data obtained are compared with the results of a com- 
putation using (14) and with numerical values obtained by an approximate solution [2]. 

Solutions of the problem of "freezing of thawed ground" for bodies of canonical shape 
under the assumption that the liquid-phase temperature equals the solidification tempera- 
ture are represented extensively in the literature by a computation of the temperature 
fields and of the duration of the phase transition process. In this case the direct inte- 
gration of (8) permits the solution to be obtained with the heat-exchange intensity on the 
outer ~t(~) = 0 and inner~2(N) = 0 shell boundaries taken into account: 

For tl = ts, ~i(~) = 0 

P?I 
T= 

2X2R~ t2--t, i q2 1 1 
(7. 2 / 

X 2;L~ -V R2 (Ri + ~l) ~+2 __ R2 
a,, n -}- 2 2 n + l  \ a-~- , - n v - ~  ' t iE(5 ;  0); ( 20 )  

and for t2 = ta,(1)2(~) = 0 

T= 
-- P72 

1 2s t t - t 3 + q t  ) 
~l ~ (RI  @ ql) n+l 

Rf--2- + n +  1 x 

( 2s . s  § (R~§ ~+2 
X cq n-f- 2 

R? +~ 2;q 
n §  1 oq 

R?+2 ] 
R~ -- n-I-2 ' ~16(0; 5). 

The time of total shell solidification T m is 

CiT~ PTi 

2Z.2p,~_([2_13q_q2 o:21 ) n-t- 1 ( 2~2 , ) R?+2__ D~+2 _~ 52 l 

"~ -- ~2 --ff-J n§ 2 

(2]) 

(22) 

for tl = t3 and 
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TABLE I. Comparison between Obtained and Known 
[2] Approximate Solutions of the Solidification 
Problem 

Body shape ] Solution (24) Solution [2 ] 

Plate  

Cy~nder 

Sphere 

62 971 
Tra : ~ -  %2(ta__t2 ) 

62 P?a 
Tin-- 3 ~(/3--t2) 

7~2 PY1 
q~m - -  

24 ~2(t3--t2) 

8z PY1 
T r f t - -  2 2~_(t~--t2) 

6 z P?l 

4 ?2(t3--t2) 

62 PT1 
~,2(t3 t2) 

T m 
- -  9 7 . .  

22~R~; (ti --t3 + qi as 

~ 2  

n +  1 
R~ +2 -- ~, I 2Z~ Rt ~- ~ /~l (23) 

for t2 = t3, 

The solutions (20) and (22) are easily carried over to the problem of the solidification 
of complex bodies (RI = 0, R2 = 5). 

The solidification time of a complex one-dimensional body of complex shape is computed 
from the formula 

Tin-= --P?~ I6z~ 2 + ( n +  1)(n + 2) 1 ~2] 
. ( 2 4 )  

Recommendations on computing the quantities 5 and n for a continuous homogeneous solid 
are given in [5]. For bodies of canonical shape the values of 6 and n are determined as: 5 is 
the half-thickness and n = 0 for a plate; 5 is the radius and n = I for a cylinder, and 5 is 
the radius and n = 2 for a sphere. 

The possibility of analyzing the heat-exchange dynamics of one-dimensional continuous 
solids with the phase transition taken into account is confirmed by comparing the proposed 
solution (24) with the known solutions [2] for bodies of canonical shape obtained on the 
basis of the first method of L. S. Leibenzon for boundary conditions of the first kind (Table 
I). 

NOTATION 

r is the running coordinate, r, dimensionless coordinate; ~, phase transition zone 
boundary; 6, governing dimension; n, form factor; T, running time; Tm, solidification time; 
%, coefficient of heat conduction; and S(~), phase interface surface area. 
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